三角函数内容规律 V+)P PU+
n:-(_vI)
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在. U Q+ppC`0
TW?1Ww
1、三角函数本质: +*2Z~km_V
CU9.}mJ)
三角函数的本质来源于定义 $yJHn
MQ
t-i(W0
sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。 3%b!|fk
_W_fW^~Lme
深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 >4g~^ SD
#a^V"$L
sin(A+B) = sinAcosB+cosAsinB 为例: A#VwF<
yiS%z7-
推导: C@>L&vwbf
{@#M(b8qH
首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。 <XZYEmeA=
x%isbAx
A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) r"gP&V
]9, @AX~L
OA'=OA=OB=OD=1,D(1,0) OZ]$9s~t
KOA8o}
∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 Rueo+$|z
*
RD"&E;
和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) P`WXxZG
,VP@^q/hR
[1] E["V^;qy
2q%>!kh
两角和公式 [,?B2t%
,9J[rv3
sin(A+B) = sinAcosB+cosAsinB "ti@DOF
F"X X'g)
sin(A-B) = sinAcosB-cosAsinB ?o$h\Tn
w:I.td\<
cos(A+B) = cosAcosB-sinAsinB $?+!)[2,/
YUTEC4a55
cos(A-B) = cosAcosB+sinAsinB V}Kp2{6d]
[{JqE(sh[
tan(A+B) = (tanA+tanB)/(1-tanAtanB) u&mqki&u
i_ ?m0(3
tan(A-B) = (tanA-tanB)/(1+tanAtanB) BXAb!_P?
?o}/
$cIT-
cot(A+B) = (cotAcotB-1)/(cotB+cotA) 0`"m_^]+
xvNSDyk
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
^C-b
AqW:Unp
倍角公式 gK~GsK
BF4<4/uz&
Sin2A=2SinA•CosA C^<.r
Bl
\:4?
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 ZO7T`{'A
?KhC, mMj
tan2A=2tanA/(1-tanA^2) .w1t
*
w
65%nU-/zb$
(注:SinA^2 是sinA的平方 sin2(A) ) ,FYuHfOX>
)Of7Ik9j=
三倍角公式 DF OU2
UWor%H~\
li4n/W&
6Hx?P77X%
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
EN)6!{
qJ-8[
cos3α=4cosα·cos(π/3+α)cos(π/3-α) %8oh=)8v{
L#XR,ML
tan3a = tan a · tan(π/3+a)· tan(π/3-a) F-=#(<u'
Q5O{
gDG
三倍角公式推导 ZGB3'
!(vNzbY"=
sin3a PNl')W
]:(wp3n
=sin(2a+a) U=q{Tp}*
q+z+/MX_l
=sin2acosa+cos2asina *>jU0He1
?S6LB7|G?
=2sina(1-sin²a)+(1-2sin²a)sina N~^<UK
]xcU+&]0Q
=3sina-4sin³a
&U]=|j YI
N(2WqDxCi1
cos3a P
Q>IY <T
=6BMEnURB
=cos(2a+a) tqC)cFF9
\v"~;Rk(_
=cos2acosa-sin2asina )^$8^Nt
(_]Z}+%
=(2cos²a-1)cosa-2(1-sin²a)cosa 2m?s~%`
@7?No4D_bE
=4cos³a-3cosa *!}xTBca
F*pn_G^/
sin3a=3sina-4sin³a lv`_dy\
T6^/5Z-
=4sina(3/4-sin²a) E/y"c }v
F *B=-/p&!
=4sina[(√3/2)²-sin²a] 9F`^bo4C
fgxhx@}M9
=4sina(sin²60°-sin²a) ?3n5D%6r
<1++3">
=4sina(sin60°+sina)(sin60°-sina) |s:f'fvw
uvaSuW*.
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] kP`|:?
\6t`LcEX0
=4sinasin(60°+a)sin(60°-a) -Yxk2M'+F
\r7Vp+< |